Molecular Detection of OXA-143 beta-lactamase gene in P. aeruginosa

Deteksi molekuler gen beta-laktamase OXA-143 pada P. aeruginosa

Authors

  • Jasim Mohammed Abed Department of Laboratory, Thi-Qar Health Directorate, Iraqi Ministry of Health, 64001, Thi-Qar.
  • Ahmed Ramadan Hadabi Al-Khamis Department of Laboratory, Thi-Qar Health Directorate, Iraqi Ministry of Health, 64001, Thi-Qar.
  • Hamid Kadhim Sameer Department of Laboratory, Thi-Qar Health Directorate, Iraqi Ministry of Health, 64001, Thi-Qar.
  • Ahmed Faleh Hassun Department of Laboratory, Thi-Qar Health Directorate, Iraqi Ministry of Health, 64001, Thi-Qar.

DOI:

https://doi.org/10.21070/ijhsm.v2i2.125

Keywords:

P. aeruginosa, beta lactamase, Oxacillinase, blaOXA143

Abstract

Pseudomonas aeruginosa, an opportunistic-bacteria that causes many clinical and hospital infections, struggles to be treated due to its drug resistance.   This bacterium resists beta-lactams by producing broad-spectrum beta-lactamases.   This study will determine antibiotic resistance and identify the blaOXA-143 gene in clinical P. aeruginosa isolates.   This study isolated P. aeruginosa from patients using McConkey agar.   Gram staining, oxidase, catalase, MRVP, motility in SIM medium, and fluorescent pigment synthesis on cetrimide agar identified and validated P. aeruginosa isolates.   DNA was extracted from isolates using the kit.   Primers were created and confirmed using NCBI.   PCR was used to detect blaOXA-143.   The 16S rRNA gene was PCR-analyzed to confirm the isolates and test the PCR test.   P. aeruginosa was isolated from 100 samples: blood (36%), urine (30%), wound (20%), and trachea (14%).  Penicillin had 100% resistance in a study of 100 P. aeruginosa isolates, followed by cefixime at 86%.   Ipenem, meropenem, calcitin, and cefotaxime had resistance rates of 42%, 40%, 68%, and 50%, respectively.   The lowest Cefepim resistance was 34%.   In this investigation, 47% of isolates were multidrug-resistant.   All isolates were verified by 16SrRNA detection.   None of the isolates had the blaOXA-143 gene.

 Highlights:

  1. aeruginosa shows high resistance to multiple antibiotics.
  2. 47% isolates were multidrug-resistant, confirmed via 16S rRNA.
  3. blaOXA-143 gene was not detected in any isolates.

Keywords: P. aeruginosa, beta lactamase, Oxacillinase, blaOXA143

References

[1]. R.-C. Huang et al., “Hospital-acquired infections in patients hospitalized with COVID-19: First report from Taiwan,” Journal of the Chinese Medical Association, vol. 85, no. 9, pp. 922–927, Jun. 2022, doi: 10.1097/jcma.0000000000000764.

[2]. S. Brinkwirth, O. Ayobami, T. Eckmanns, and R. Markwart, “Hospital-acquired infections caused by enterococci: a systematic review and meta-analysis, WHO European Region, 1 January 2010 to 4 February 2020,” Eurosurveillance, vol. 26, no. 45, Nov. 2021, doi: 10.2807/1560-7917.es.2021.26.45.2001628.

[3]. S. Labovská, “Pseudomonas aeruginosa as a Cause of Nosocomial Infections,” in IntechOpen eBooks, 2021. doi: 10.5772/intechopen.95908.

[4]. F. A. Owusu et al., “Occurrence of Carbapenemases, Extended-Spectrum Beta-Lactamases and AmpCs among Beta-Lactamase-Producing Gram-Negative Bacteria from Clinical Sources in Accra, Ghana,” Antibiotics, vol. 12, no. 6, p. 1016, Jun. 2023, doi: 10.3390/antibiotics12061016.

[5]. E. F. Hussein, “Pseudomonas aeruginosa Represents a Main Cause of Hospital-Acquired Infections (HAI) and Multidrug Resistance (MDR),” in IntechOpen eBooks, 2022. doi: 10.5772/intechopen.108759.

[6]. E. J. Alyamani, M. A. Khiyami, R. Y. Booq, B. M. Alnafjan, M. A. Altammami, and F. S. Bahwerth, “Molecular characterization of extended-spectrum beta-lactamases (ESBLs) produced by clinical isolates of Acinetobacter baumannii in Saudi Arabia,” Annals of Clinical Microbiology and Antimicrobials, vol. 14, no. 1, Aug. 2015, doi: 10.1186/s12941-015-0098-9.

[7]. M. F. Y. Bucheli, “Caracterización molecular de genes de resistencia a β-lactámicos en aislados bacterianos clínicos de la familia Enterobacteriaceae,” Revista Ecuatoriana De Medicina Y Ciencias Biológicas, vol. 42, no. 1, Apr. 2021, doi: 10.26807/remcb.v42i1.886.

[8]. E. J. Alyamani, M. A. Khiyami, R. Y. Booq, B. M. Alnafjan, M. A. Altammami, and F. S. Bahwerth, “Molecular characterization of extended-spectrum beta-lactamases (ESBLs) produced by clinical isolates of Acinetobacter baumannii in Saudi Arabia,” Annals of Clinical Microbiology and Antimicrobials, vol. 14, no. 1, Aug. 2015, doi: 10.1186/s12941-015-0098-9.

[9]. H. Fadhil, “Association between the Demographic Characteristics of Patients and the Severity of COVID-19,” University of Thi-Qar Journal of Science, vol. 10, no. 2, pp. 92–97, Dec. 2023, doi: 10.32792/utq/utjsci/v10i2.1093.

[10]. J. Mardaneh, K. Ahmadi, S. Jahan Sepas, “Determination antimicrobial resistance profile of Pseudomonas aeruginosa strains isolated from hospitalized patients in Taleghani Hospital (Ahvaz, Iran) from 2011-2012”. Journal of Fasa University of Medical Sciences, vol.3, no. 3, pp. 188-93, Sep 2013.

[11]. V. Nikbin, M. Aslani, Z. Sharafi, M. Hashemipour, F. Shahcheraghi, and G. Ebrahimipour, “Molecular identification and detection of virulence genes among Pseudomonas aeruginosa isolated from different infectious origins,” Sep. 01, 2012. https://pmc.ncbi.nlm.nih.gov/articles/PMC3465536/

[12]. A. Peymani, T. Naserpour-Farivar, E. Zare, and K. Azarhoosh, “Distribution of blaTEM, blaSHV, and blaCTX-M genes among ESBL-producing P. aeruginosa isolated from Qazvin and Tehran hospitals, Iran,” Jun. 01, 2017. https://pmc.ncbi.nlm.nih.gov/articles/PMC5584084/

[13]. M. Komijani, K. Shahin, M. Barazandeh, M. Sajadi, “Prevalence of extended-spectrum β-lactamases genes in clinical isolates of Pseudomonas aeruginosa”. Medical Laboratory Journal. Vol. 12, no. 5, pp. 34-41, Sep 2018.

[14]. F. Ullah, S. A. Malik, and J. Ahmed, “Antimicrobial susceptibility and ESBL prevalence in Pseudomonas aeruginosa isolated from burn patients in the North West of Pakistan,” Burns, vol. 35, no. 7, pp. 1020–1025, Jun. 2009, doi: 10.1016/j.burns.2009.01.005.

[15]. R. Moniri, Z. Tavajjohi. “Detection of ESBLs and MDR in Pseudomonas aeruginosa in a tertiary-care teaching hospital” Archives of Clinical Infectious Diseases, vol. 6, no. 1, pp.18-23. 2011

[16]. E. H. Campana, D. E. Xavier, F. V.-B. Petrolini, J. R. Cordeiro-Moura, M. R. E. De Araujo, and A. C. Gales, “Carbapenem-resistant and cephalosporin-susceptible: a worrisome phenotype among Pseudomonas aeruginosa clinical isolates in Brazil,” The Brazilian Journal of Infectious Diseases, vol. 21, no. 1, pp. 57–62, Dec. 2016, doi: 10.1016/j.bjid.2016.10.008.

[17]. V. C. Dias et al., “Epidemiological characteristics and antimicrobial susceptibility among carbapenem-resistant non-fermenting bacteria in Brazil,” The Journal of Infection in Developing Countries, vol. 10, no. 06, pp. 544–553, Jun. 2016, doi: 10.3855/jidc.6640.

[18]. J. Mahindroo et al., “The genomic diversity and antimicrobial resistance of Non-typhoidal Salmonella in humans and food animals in Northern India,” One Health, vol. 19, p. 100892, Sep. 2024, doi: 10.1016/j.onehlt.2024.100892

Downloads

Published

2025-04-05

How to Cite

Abed, J. M., Al-Khamis, A. R. H., Sameer, H. K., & Hassun, A. F. (2025). Molecular Detection of OXA-143 beta-lactamase gene in P. aeruginosa: Deteksi molekuler gen beta-laktamase OXA-143 pada P. aeruginosa. Indonesian Journal on Health Science and Medicine, 2(2). https://doi.org/10.21070/ijhsm.v2i2.125

Issue

Section

Articles