Wasan Abdulateef Majeed (1), Ola Abdulkareem Kadhim (2), Zainab Hussein Mahdi (3)
General Background: Staphylococcus aureus pneumonia remains a major global health concern due to its virulence, biofilm formation, and rising methicillin-resistant strains, which complicate treatment. Specific Background: Understanding the interplay between humoral and cellular immunity is crucial for designing effective interventions, as both antibody-mediated and T-cell–mediated responses contribute to pathogen clearance. Knowledge Gap: While immune evasion strategies of S. aureus are documented, quantitative insights into the temporal dynamics of antibody production, T-cell proliferation, and cytokine release during infection are limited. Aims: This study aimed to evaluate the kinetics of humoral and cellular immune responses in a rat model of S. aureus pneumonia. Results: Infected rats exhibited significantly elevated IgM and IgG levels, with IgM peaking at day 14 and IgG progressively increasing. Splenocyte proliferation and cytokine production (IFN-γ, IL-4) were markedly enhanced, particularly at day 21, indicating strong Th1 and Th2 activation. Novelty: The study provides an integrated temporal profile of dual-arm immunity in experimental S. aureus pneumonia, demonstrating concurrent robust humoral and cellular activation. Implications: These findings highlight the necessity of targeting both antibody and T-cell responses in vaccine design, potentially guiding the development of immunotherapies for effective prevention and treatment of S. aureus pneumonia.Highlight :
Keywords : Staphylococcus, Humoral, Cellular, Immunity, Rat Model
[1] D. Parker, C. L. Ryan, F. Alonzo, V. J. Torres, P. J. Planet, and A. S. Prince, “CD4+ T Cells Promote the Pathogenesis of Staphylococcus Aureus Pneumonia,” J. Infect. Dis., vol. 211, no. 6, pp. 835–845, 2015, doi: 10.1093/infdis/jiu525.
[2] J. Braverman, I. R. Monk, C. Ge, et al., “Staphylococcus Aureus Specific Lung Resident Memory CD4+ Th1 Cells Attenuate the Severity of Influenza Virus Induced Secondary Bacterial Pneumonia,” Mucosal Immunol., vol. 15, no. 4, pp. 783–796, 2022, doi: 10.1038/s41385-022-00529-4.
[3] W. H. Self, R. G. Wunderink, D. J. Williams, et al., “Staphylococcus Aureus Community-Acquired Pneumonia: Prevalence, Clinical Characteristics, and Outcomes,” Clin. Infect. Dis., vol. 63, no. 3, pp. 300–309, 2016, doi: 10.1093/cid/ciw300.
[4] L. Hall-Stoodley, J. W. Costerton, and P. Stoodley, “Bacterial Biofilms: From the Natural Environment to Infectious Diseases,” Nat. Rev. Microbiol., vol. 2, no. 2, pp. 95–108, 2004, doi: 10.1038/nrmicro821.
[5] N. J. Verkaik, C. P. de Vogel, H. A. Boelens, et al., “Anti-Staphylococcal Humoral Immune Response in Persistent Nasal Carriers and Noncarriers of Staphylococcus Aureus,” J. Infect. Dis., vol. 199, no. 5, pp. 625–632, 2009, doi: 10.1086/596743.
[6] F. Askarian, T. Wagner, M. Johannessen, and V. Nizet, “Staphylococcus Aureus Modulation of Innate Immune Responses Through Toll-Like (TLR), NOD-Like (NLR) and C-Type Lectin (CLR) Receptors,” FEMS Microbiol. Rev., vol. 42, no. 5, pp. 656–671, 2018, doi: 10.1093/femsre/fuy025.
[7] J. S. Cho, Y. Guo, R. I. Ramos, et al., “Neutrophil-Derived IL-1β Is Sufficient for Abscess Formation in Immunity Against Staphylococcus Aureus in Mice,” PLoS Pathog., vol. 8, no. 11, p. e1003047, 2012, doi: 10.1371/journal.ppat.1003047.
[8] L. S. Miller, V. G. Fowler, S. K. Shukla, et al., “Development of a Vaccine Against Staphylococcus Aureus Invasive Infections: Evidence Based on Human Immunity, Genetics and Bacterial Evasion Mechanisms,” FEMS Microbiol. Rev., vol. 44, no. 1, pp. 123–153, 2020, doi: 10.1093/femsre/fuz030.
[9] A. F. Brown, J. M. Leech, T. R. Rogers, and R. M. McLoughlin, “Staphylococcus Aureus Colonization: Modulation of Host Immune Responses and Impact on Human Vaccine Design,” Front. Immunol., vol. 4, p. 507, 2013, doi: 10.3389/fimmu.2013.00507.
[10] Y. Wang, L. I. Cheng, D. R. Helfer, et al., “Mouse Model of Hematogenous Implant-Related Staphylococcus Aureus Biofilm Infection Reveals Therapeutic Targets,” Proc. Natl. Acad. Sci. U. S. A., vol. 114, no. 26, pp. E5094–E5102, 2017, doi: 10.1073/pnas.1703427114.
[11] D. Nurjadi, M. Kain, P. Marcinek, et al., “Ratio of T-Helper Type 1 (Th1) to Th17 Cytokines in Whole Blood Is Associated With Human β-Defensin 3 Expression in Skin and Persistent Staphylococcus Aureus Nasal Carriage,” J. Infect. Dis., vol. 214, no. 11, pp. 1744–1751, 2016, doi: 10.1093/infdis/jiw440.
[12] A. K. Varshney, G. A. Kuzmicheva, J. Lin, et al., “A Natural Human Monoclonal Antibody Targeting Staphylococcus Aureus Toxins Protects Against Pneumonia and Skin Infection,” mBio, vol. 9, no. 6, p. e02391-18, 2018, doi: 10.1128/mBio.02391-18.
[13] A. Nakou, M. Woodhead, and A. Torres, “MRSA as a Cause of Community-Acquired Pneumonia,” Eur. Respir. J., vol. 34, no. 5, pp. 1013–1014, 2009, doi: 10.1183/09031936.00120009.
[14] P. Matzinger, “The Danger Model: A Renewed Sense of Self,” Science, vol. 296, no. 5566, pp. 301–305, 2002, doi: 10.1126/science.1071059.
[15] J. K. Rudkin, A. M. Edwards, M. G. Bowden, et al., “Methicillin Resistance Reduces the Virulence of Healthcare-Associated Methicillin-Resistant Staphylococcus Aureus by Interfering With the Agr Quorum Sensing System,” J. Infect. Dis., vol. 205, no. 5, pp. 798–806, 2012, doi: 10.1093/infdis/jir845.
[16] P. Peyrani, M. Allen, T. L. Wiemken, et al., “Severity and Outcomes of Adults Hospitalized With Laboratory-Confirmed Influenza: The Hospitalized Influenza Adults (HIA) Project,” BMC Infect. Dis., vol. 19, no. 1, p. 89, 2019, doi: 10.1186/s12879-019-3729-5.
[17] S. A. Fritz, K. M. Tiemann, P. G. Hogan, et al., “A Serologic Correlate of Protective Immunity Against Community-Onset Staphylococcus Aureus Infection,” Clin. Infect. Dis., vol. 56, no. 11, pp. 1554–1561, 2013, doi: 10.1093/cid/cit123.
[18] A. S. Anderson, I. L. Scully, Y. Timofeyeva, et al., “Staphylococcus Aureus Manganese Transport Protein C Is a Highly Conserved Cell Surface Protein That Elicits Protective Immunity Against S. Aureus and Staphylococcus Epidermidis,” J. Infect. Dis., vol. 205, no. 10, pp. 1688–1696, 2012, doi: 10.1093/infdis/jis278.
[19] R. A. Proctor, “Is There a Future for a Staphylococcus Aureus Vaccine?,” Vaccine, vol. 30, no. 19, pp. 2921–2927, 2012, doi: 10.1016/j.vaccine.2011.11.006.