Wisam Najm Abdullah AL Hachami (1)
This paper aims to investigate the dosimetric performance of two volumes of interest (VOIs) treated using coplanar as well as noncoplanar VMAT (volumetricmodulated arc therapy) in pituitary adenoma treatment. Fifteen patient cases were retrospectively studied with coplanar and noncoplanar VMAT plans generated. Dosimetric analysis concentrated on planning target volume (PTV) coverage and OAR sparing. The average dose to the PTV was 50.17Gy in coplanar plans and 50.20Gy in noncoplanar plans, demonstrating similar PTV coverage. Nevertheless, noncoplanar VMAT appeared to have a better conformity, with D95% achieving a maximum of 98.71% versus a maximum of 97.78% for coplanar. In OAR sparing, noncoplanar VMAT resulted in a significant decrease in the mean dose delivered to the right eye (8.56Gy vs 14.27Gy) and left eye (10.33Gy vs 12.32Gy). The mean dosimetric exposure was also lower in the left optic nerve for noncoplanar plans (26.57 vs 28.95). Notwithstanding, the highest brainstem dose increased marginally in noncoplanar plans (53.88 Gy versus 52.20 Gy); however, all dosimetric factors values still fell well within acceptable clinical constraints. These results indicated that noncoplanar VMAT techniques provide greater OAR-sparing capability with similar target dose coverage, which may support their clinical application for centrally located intracranial tumors, such as pituitary adenomas.
Highlights:
[1] H. Hirashima, M. Nakamura, Y. Miyabe, M. Uto, K. Nakamura, and T. Mizowaki, “Monitoring of mechanical errors and their dosimetric impact throughout the course of non-coplanar continuous volumetric-modulated arc therapy,” Radiat. Oncol., vol. 13, no. 1, p. 27, 2018, doi: 10.1186/s13014-018-0972-7.
[2] Z. Xiong, C. Cheng, L. Zhou, B. Eckroate, L. Bell, F. Warburton, D. Huang, S. B. Motwani, C. S. Cathcart, K. Nie, N. Yue, and Y. Zhang, “Dosimetric evaluation of a novel automated noncoplanar volumetric modulated arc therapy technique for treating optic nerve sheath meningiomas,” Front. Oncol., vol. 15, p. 1531918, 2025, doi: 10.3389/fonc.2025.1531918.
[3] S. M. Chae, K. W. Lee, and S. H. Son, “Dosimetric impact of multileaf collimator leaf width according to sophisticated grade of technique in the IMRT and VMAT planning for pituitary adenoma lesion,” Oncotarget, vol. 7, no. 47, pp. 78119–78129, 2016, doi: 10.18632/oncotarget.12744.
[4] E. Y. W. Cheung, S. S. H. Ng, S. H. Y. Yung, D. Y. T. Cheng, F. Y. C. Chan, and J. K. Y. Cheng, “Multi-planar VMAT plans for high-grade glioma and glioblastoma targeting the hypothalamic-pituitary axis sparing,” Life, vol. 12, no. 2, p. 195, 2022, doi: 10.3390/life12020195.
[5] R. Hayward, “A qualitative dosimetric comparison of Helical Tomotherapy, Coplanar VMAT, and Non-coplanar VMAT for radiotherapy of centrally located brain tumors,” M.S. thesis, Grand Valley State Univ., Allendale, MI, USA, 2021. [Online]. Available: https://scholarworks.gvsu.edu/gradprojects/55
[6] M. Uto, T. Mizowaki, K. Ogura, Y. Miyabe, M. Nakamura, N. Mukumoto, H. Hirashima, and M. Hiraoka, “Volumetric modulated Dynamic WaveArc therapy reduces the dose to the hippocampus in patients with pituitary adenomas and craniopharyngiomas,” Pract. Radiat. Oncol., vol. 7, no. 6, pp. 382–387, 2017, doi: 10.1016/j.prro.2017.04.004.
[7] T. Ventura, H. Rocha, B. da C. Ferreira, J. Dias, and M. do C. Lopes, “Comparison of non-coplanar optimization of static beams and arc trajectories for intensity-modulated treatments of meningioma cases,” Phys. Eng. Sci. Med., vol. 44, no. 4, pp. 1273–1283, 2021, doi: 10.1007/s13246-021-01061-8.
[8] S. Balik, S. Chao, and G. Neyman, “Gamma Knife and volumetric modulated arc therapy stereotactic radiosurgery plan quality and OAR sparing comparison for pituitary adenomas and vestibular schwannomas,” J. Radiosurg. SBRT, vol. 5, pp. 237–247, 2018. [No doi available].
[9] H. Hirashima, M. Nakamura, Y. Miyabe, N. Mukumoto, T. Ono, H. Iramina, and T. Mizowaki, “Quality assurance of non-coplanar, volumetric-modulated arc therapy employing a C-arm linear accelerator, featuring continuous patient couch rotation,” Radiat. Oncol., vol. 14, p. 62, 2019, doi: 10.1186/s13014-019-1264-6.
[10] T. W. Chen, J. Sison, B. Lee, A. J. Olch, A. Chang, A. Giebeler, and K. Wong, “A dosimetric comparison of intensity-modulated proton therapy, volumetric-modulated arc therapy, and 4π non-coplanar intensity-modulated radiation therapy for a patient with parameningeal rhabdomyosarcoma,” Cureus, vol. 9, no. 9, p. e1670, 2017, doi: 10.7759/cureus.1670.
[11] E. Y. W. Cheung, K. H. Y. Lee, W. T. L. Lau, A. P. Y. Lau, and P. Y. Wat, “Non-coplanar VMAT plans for postoperative primary brain tumour to reduce dose to hippocampus, temporal lobe and cochlea: A planning study,” BJR Open, vol. 3, no. 1, p. 20210009, 2021, doi: 10.1259/bjro.20210009.
[12] V. Panet-Raymond, W. Ansbacher, S. Zavgorodni, et al., “Coplanar versus noncoplanar IMRT and VMAT treatment planning for fronto-temporal high-grade glioma,” J. Appl. Clin. Med. Phys., vol. 13, no. 4, 2012, doi: 10.1120/jacmp.v13i4.3754.
[13] N. Limpichotikul, et al., “Optimization of couch angles and number of arcs in non-coplanar VMAT for pituitary adenomas,” J. Phys.: Conf. Ser., vol. 1248, p. 012059, 2019, doi: 10.1088/1742-6596/1248/1/012059.
[14] H. Zeng, M. Zhong, Z. Chen, S. Tang, and Z. Wen, “A dosimetric comparison of non-coplanar VMAT and non-coplanar fixed field IMRT in hippocampus-avoidance whole-brain radiation therapy,” Front. Oncol., vol. 14, p. 1428329, 2025, doi: 10.3389/fonc.2024.1428329.
[15] M. Zhang, et al., “Noncoplanar VMAT for brain metastases: A plan quality and delivery efficiency comparison with coplanar VMAT,” Radiat. Oncol., vol. 14, p. 60, 2019, doi: 10.1186/s13014-019-1264-6.
[16] C. Noël, et al., “Dosimetric benefits of knowledge-based planning in non-coplanar VMAT for brain lesions,” Radiother. Oncol., vol. 121, no. 1, pp. 148–153, 2016, doi: 10.1016/j.radonc.2016.07.016.
[17] S. S. Yom, et al., “Noncoplanar VMAT improves dosimetry in cranial stereotactic radiotherapy,” Front. Oncol., vol. 5, p. 43, 2015, doi: 10.3389/fonc.2015.00043.
[18] C. Han, et al., “Trajectory optimization of NC-VMAT in multiple brain metastases,” Radiother. Oncol., vol. 124, no. 3, pp. 433–439, 2017, doi: 10.1016/j.radonc.2017.07.014.
[19] M. Rossi, et al., “Comparison of non-coplanar VMAT and coplanar VMAT for skull base tumors,” Med. Dosim., vol. 43, no. 3, pp. 269–276, 2018, doi: 10.1016/j.meddos.2018.03.004.
[20] J. M. Park, et al., “Dosimetric comparison of coplanar vs. non-coplanar dual-arc VMAT in post-resection brain tumor treatment,” Radiat. Oncol. J., vol. 36, no. 1, pp. 15–22, 2018, doi: 10.3857/roj.2018.00062.
[21] M. Uto, T. Mizowaki, K. Ogura, and M. Hiraoka, “Non-coplanar volumetric-modulated arc therapy (VMAT) for craniopharyngiomas reduces radiation doses to the bilateral hippocampus: a planning study comparing dynamic conformal arc therapy, coplanar VMAT, and non-coplanar VMAT,” Radiat. Oncol., vol. 11, p. 86, 2016, doi: 10.1186/s13014-016-0659-x.
[22] T. M. Ma, Y. M. Mowery, T. Wang, S. R. Rapp, J. J. Urbanic, and M. D. Chan, “Optimizing hippocampal sparing during whole-brain radiotherapy in patients with brain metastases using a knowledge-based planning technique,” BMC Cancer, vol. 20, p. 541, 2020, doi: 10.1186/s12885-020-6535-y.