Dina H. Sadiq (1)
This work used histological and histochemical methods to look at how the mice's liver, kidney, and suprarenal glands develop after birth. Therefore, using mice in scientific research is permissible. The experiment used thirty-two samples of the liver, kidney, and suprarenal gland of mice, eight at each age (one day, seven days, fourteen days, and twenty-one days). A thin capsule encased the liver on the first day of life; a thicker capsule encased it after 14 to 21 days. Hepatocytes made up the parenchyma, and a central vein encircled them. The parenchyma was further split by the sinusoids, and Next to the endothelial cells that encircled the hepatic sinusoids were protruding Kupffer cells. The liver measurements change with aging. Cortical, midcortical, and juxtamedullary renal corpuscles are distinguished by their increasing diameter with age. Distal convoluted tubules are shorter than the longest convoluted tubules, which are the proximal ones. Furthermore, Henle loops were short at one-day and adult ages but long at other ages.
Highlights:
1. Y. Xing, A. M. Lerario, W. Rainey, and G. D. Hammer, “Development of adrenal cortex zonation,” Endocrinol. Metab. Clin. North Am., vol. 44, no. 2, pp. 243–274, 2015, doi: 10.1016/j.ecl.2015.02.001. PMID: 26038200; PMCID: PMC4486052.
2. J. Karpac, D. Ostwald, S. Bui, P. Hunnewell, M. Shankar, and U. Hochgeschwender, “Development, maintenance, and function of the adrenal gland in early postnatal proopiomelanocortin-null mutant mice,” Endocrinology, vol. 146, no. 6, pp. 2555–2562, 2005, doi: 10.1210/en.2004-1290.
3. E. M. Elsheikh, “Histogenesis of the rabbit liver (pars hepatica) with particular reference to the portal area,” Iraqi J. Vet. Sci., vol. 37, no. 1, pp. 177–182, 2023.
4. N. H. Yousif, H. D. Hadi, and H. M. Jihad, “Histological study of liver in guinea pig Cavia porcellus (Linnaeus, 1758) in Iraq,” Rev. Bionatura, vol. 8, no. 3, p. 80, 2023, doi: 10.21931/RB/2023.08.03.80.
5. N. H. Yousif, “Histological study of liver for squirrel (Sciurus anomalus) (Güldenstädt, 1785) in Iraq,” GSC Biol. Pharm. Sci., vol. 20, no. 1, pp. 91–94, 2022.
6. R. A. Al-Aamery et al., “Morphological description and comparative histological study of the liver in two Iraqi mammals: weasel (Herpestes javanicus) and eastern gray squirrel (Sciurus carolinensis),” Biochem. Cell Arch., vol. 20, no. 1, pp. 167–170, 2020.
7. K. M. Dyce, W. O. Sack, and C. J. G. Wensing, Textbook of Veterinary Anatomy, 4th ed., Philadelphia: W.B. Saunders, 2010, pp. 554–694.
8. M. Z. Al-Hamdany, “Comparative anatomical, histological, and histochemical study of liver in human and domestic rabbit,” Iraqi J. Vet. Sci., vol. 33, no. 2, pp. 437–446, 2019.
9. K. Sainio, “Development of the mesonephric kidney,” in C. Vize, A. S. Woolf, and J. B. L. Bard (eds.), The Kidney: From Normal Development to Congenital Disease, London: Academic Press, 2003, pp. 75–86.
10. W. G. Suhett, J. Gerez, M. S. Hohmann, L. Staurengo-Ferrari, W. A. Verri, and F. H. O. Pinho, et al., “Exploring porcine kidney explants as a model for the study of nephrotoxins and the therapeutic potential of phytic acid,” Environ. Toxicol. Pharmacol., vol. 102, p. 104241, 2023, doi: 10.1016/j.etap.104241.
11. P. Dutta, S. Hakimi, and A. T. Layton, “How the kidney regulates magnesium: a modelling study,” R. Soc. Open Sci., vol. 11, no. 3, p. 231484, 2024, doi: 10.1098/rsos.231484.
12. P. Kaewmong et al., “Histological study of seventeen organs from dugong (Dugong dugon),” PeerJ, vol. 11, p. e15859, 2023, doi: 10.7717/peerj.15859.
13. A. F. Baragooth, H. A. Ghazi, and K. Abdzaid, “Histological study to the nephrons of the kidney in dogs (Canis familiaris) in middle of Iraq,” Kufa J. Vet. Med. Sci., vol. 5, no. 1, pp. 98–103, 2014.
14. A. Kalita and P. C. Kalita, “Urinary system of mizo local pig (Zovawk): a gross morphological and histological study,” Eur. J. Biol. Pharm. Sci., vol. 1, no. 3, pp. 458–464, 2014.
15. M. B. Mahmood, “A comparison between ketamine-xylazine and ketamine-midazolam or all of them to induce balanced anesthesia in rabbits,” Iraqi J. Vet. Sci., vol. 36, no. 2, pp. 499–506, 2022, doi: 10.33899/ijvs.2021.130618.1852.
16. S. K. Suvarna, C. Layton, and J. D. Bancroft, Bancroft’s Theory and Practice of Histological Techniques, 8th ed., Philadelphia: Churchill Livingstone Elsevier, 2018, pp. 176–725.
17. K. M. Al-Rawi and I. S. Kalaf-Allah, Design and Analysis of Agricultural Experiments, Mosul: Dar-Al Kutub, 1980, pp. 65, 95–107.
18. A. Plain, L. Knödl, I. Tegtmeier, et al., “The ex vivo perfused mouse adrenal gland—a new model to study aldosterone secretion,” Pflugers Arch., 2024, doi: 10.1007/s00424-024-02950-z.
19. T. A. Abass, “Anatomical and histological study of adrenal gland in neonatal and adult guinea pig (Cavia porcellus),” Kufa J. Vet. Med. Sci., vol. 8, no. 1, pp. 181–192, 2017.
20. I. Ekele, N. Uchenna, and C. S. Ibe, “The kidney and adrenal gland of the African palm squirrel (Epixerus ebii): a microanatomical observation,” Rev. Fac. Cs. Vets., vol. 55, no. 2, pp. 60–67, 2014.
21. G. Rossi, K. F. Liu, H. Kershaw, D. Riddell, T. H. Hyndman, D. Monks, et al., “Biological variation in biochemistry analytes in laboratory guinea pigs (Cavia porcellus),” Vet. Sci., vol. 10, p. 621, 2023, doi: 10.3390/vetsci10100621.
22. M. C. Nawata and T. L. Pannabecker, “Mammalian urine concentration: a review of renal medullary architecture and membrane transporters,” J. Comp. Physiol. B, vol. 188, no. 6, pp. 899–918, 2018.
23. S. Seema, M. Rakesh, S. Sanjeev, G. B. R., and V. K., “Histological study on capsule of the kidney in large white Yorkshire pig (Sus scrofa),” Indian J. Vet. Anat., vol. 28, no. 2, pp. 29–30, 2017.
24. I. S. Yang, I. Jang, and J. O. Yang, “CanISO: a database of genomic and transcriptomic variations in domestic dog (Canis lupus familiaris),” BMC Genomics, vol. 24, p. 613, 2023, doi: 10.1186/s12864-023-09655-0.
25. T. A. Ebeid, H. S. Aljabeili, I. H. Al-Homidan, Z. Volek, and H. Barakat, “Ramifications of heat stress on rabbit production and role of nutraceuticals in alleviating its negative impacts: an updated review,” Antioxidants, vol. 12, no. 7, p. 1407, 2023, doi: 10.3390/antiox12071407.
26. Z. Zhou, M. J. Xu, and B. Gao, “Hepatocytes: a key cell type for innate immunity,” Cell. Mol. Immunol., vol. 13, pp. 301–315, 2016