Login
Section Articles

Glutathione Transferase Response to Platinum Doped Titanium Dioxide in Aedes aegypti Pupae

Vol. 2 No. 3 (2025): Desember:

Moatasem Al-Salih (1), Moatasem Al-Salih (2), Moatasem Al-Salih (3), Syakirah Samsudin (4), Rosmilah bt Misnan (5)

(1) The General Directorate of Education, Thi-Qar Governorate, Iraq
(2) Pharmacy College University Al-Ayen, Iraq
(3) Biology department, Faculty of Science and Mathematics, University Pendidikan Sultan Idris(UPSI)., Iraq
(4) Biology department, Faculty of Science and Mathematics, University Pendidikan Sultan Idris(UPSI), Iraq
(5) Biology department, Faculty of Science and Mathematics, University Pendidikan Sultan Idris(UPSI), Iraq
Fulltext View | Download

Abstract:

General Background: Aedes aegypti is a major vector of arboviruses, and increasing resistance to chemical insecticides demands novel control strategies. Specific Background: Photocatalytic nanoparticles such as Pt-doped TiO₂ generate reactive oxygen species under light, inducing oxidative injury in mosquitoes; however, the biochemical defense response, particularly glutathione S-transferase (GST), remains insufficiently understood at the pupal stage. Knowledge Gap: No study has simultaneously assessed lipid peroxidation and GST activity in Ae. aegypti pupae exposed to Pt-TiO₂ under different light conditions. Aims: This research examined malondialdehyde (MDA) levels and GST activity in pupae exposed to Pure TiO₂ and Pt-TiO₂ under light and dark conditions. Results: Light exposure significantly amplified oxidative stress and GST activity, with Pt-TiO₂ producing the highest MDA and strongest GST induction, while dark conditions showed no meaningful biochemical alterations. Novelty: The study provides the first integrated evidence linking enhanced photocatalytic ROS generation by Pt-TiO₂ to concurrent oxidative damage and compensatory antioxidant activation in pupae. Implications: These findings clarify the mechanism of Pt-TiO₂ toxicity and support its use as an efficient light-activated nano-insecticide for vector control.
Highlight :




  • Highlights the strong light-dependent oxidative stress induced by Pt-doped TiO₂ nanoparticles.




  • Emphasizes GST upregulation as a key biochemical response to nanoparticle exposure.




  • Shows that lipid peroxidation remains elevated despite antioxidant activation.




Keywords : Aedes aegypti; Pt-doped TiO₂ nanoparticles; oxidative stress; glutathione S-transferase; malondialdehyde

References

L. C. Alvarez-González et al., “Acta Tropica,” Acta Trop., vol. 212, p. 105710, 2020.

A. Ayala, M. F. Muñoz, and S. Argüelles, “Oxidative Medicine and Cellular Longevity,” Oxid. Med. Cell. Longev., vol. 2014, p. 360438, 2014.

B. Banumathi et al., “Journal of King Saud University-Science,” J. King Saud Univ.-Sci., vol. 29, no. 4, pp. 517–527, 2017.

G. Benelli, “Acta Tropica,” Acta Trop., vol. 178, pp. 73–80, 2018.

A. A. Enayati, H. Ranson, and J. Hemingway, “Insect Biochemistry and Molecular Biology,” Insect Biochem. Mol. Biol., vol. 35, no. 7, pp. 661–675, 2005.

F. Faucon et al., “Genome Research,” Genome Res., vol. 25, no. 9, pp. 1347–1359, 2017.

G. W. Felton and C. B. Summers, “Archives of Insect Biochemistry and Physiology,” Arch. Insect Biochem. Physiol., vol. 29, no. 2, pp. 187–197, 1995.

A. Fujishima et al., “ACS Applied Materials & Interfaces,” ACS Appl. Mater. Interfaces, vol. 13, no. 27, pp. 31421–31434, 2021.

J. D. Hayes, J. U. Flanagan, and I. R. Jowsey, “Annual Review of Pharmacology and Toxicology,” Annu. Rev. Pharmacol. Toxicol., vol. 45, pp. 51–88, 2022.

J. Hemingway and H. Ranson, “Annual Review of Entomology,” Annu. Rev. Entomol., vol. 45, pp. 371–391, 2022.

I. H. Ishak et al., “Parasites & Vectors,” Parasites Vectors, vol. 10, no. 1, pp. 1–15, 2017.

D. R. Janero, “Free Radical Biology and Medicine,” Free Radic. Biol. Med., vol. 9, no. 6, pp. 515–540, 1990.

X. Jiang et al., “Science of The Total Environment,” Sci. Total Environ., vol. 639, pp. 1263–1271, 2018.

I. Kostaropoulos et al., “Pesticide Biochemistry and Physiology,” Pestic. Biochem. Physiol., vol. 69, no. 2, pp. 104–111, 2001.

S. G. Kumar et al., “Energy & Environmental Science,” Energy Environ. Sci., vol. 15, no. 2, pp. 466–518, 2022.

R. S. Lees et al., “Trends in Parasitology,” Trends Parasitol., vol. 37, no. 11, pp. 949–962, 2021.

Y. Li et al., “Journal of Environmental Chemical Engineering,” J. Environ. Chem. Eng., vol. 10, no. 3, p. 107456, 2022.

Y. Liao et al., “Journal of Materials Science: Materials in Electronics,” J. Mater. Sci. Mater. Electron., vol. 32, no. 3, pp. 2985–2997, 2021.

N. Lumjuan et al., “PLoS One,” PLoS One, vol. 6, no. 12, p. e29418, 2011.

S. Marimuthu et al., “Environmental Science and Pollution Research,” Environ. Sci. Pollut. Res., vol. 27, pp. 24331–24341, 2020.

C. L. Moyes et al., “PLoS Neglected Tropical Diseases,” PLoS Negl. Trop. Dis., vol. 11, no. 7, p. e0005625, 2017.

K. Murugan et al., “Journal of King Saud University-Science,” J. King Saud Univ.-Sci., vol. 34, no. 1, p. 101717, 2022.

K. Nakata and A. Fujishima, “Journal of Photochemistry and Photobiology C: Photochemistry Reviews,” J. Photochem. Photobiol. C: Photochem. Rev., vol. 13, no. 3, pp. 169–189, 2012.

E. Niki, “Free Radical Biology and Medicine,” Free Radic. Biol. Med., vol. 177, pp. 1–7, 2022.

A. Pandey et al., “Acta Tropica,” Acta Trop., vol. 224, p. 106125, 2021.

M. Rai and S. Pinto, “Trends in Biotechnology,” Trends Biotechnol., vol. 39, no. 8, pp. 752–755, 2021.

J. Schneider et al., “Chemical Reviews,” Chem. Rev., vol. 114, no. 19, pp. 9919–9986, 2014.

L. B. Smith et al., “Insect Biochemistry and Molecular Biology,” Insect Biochem. Mol. Biol., vol. 152, p. 103892, 2023.

S. Subarani et al., “International Journal of Mosquito Research,” Int. J. Mosq. Res., vol. 7, no. 2, pp. 1–6, 2020.

T. Su et al., “Journal of the American Mosquito Control Association,” J. Am. Mosq. Control Assoc., vol. 35, no. 1, pp. 1–5, 2019.

B. Sundararajan and B. D. R. Kumari, “Journal of Trace Elements in Medicine and Biology,” J. Trace Elem. Med. Biol., vol. 43, pp. 187–196, 2017.

U. Suresh et al., “International Journal of Environmental Health Research,” Int. J. Environ. Health Res., vol. 31, no. 3, pp. 283–294, 2021.

D. Tsikas, “Analytical Biochemistry,” Anal. Biochem., vol. 524, pp. 13–30, 2017.

K. Veerakumar et al., Green Synthesis of Nanomaterials for Bioenergy Applications, Wiley, 2021, pp. 299–318.

Q. Wang et al., “Journal of Environmental Chemical Engineering,” J. Environ. Chem. Eng., vol. 8, no. 4, p. 103955, 2020.

Z. Wei et al., “Catalysts,” Catalysts, vol. 9, no. 5, p. 478, 2019.

A. Weir et al., “Environmental Science & Technology,” Environ. Sci. Technol., vol. 46, no. 4, pp. 2242–2250, 2012.

World Health Organization, Global Vector Control Response 2017–2030, WHO, Geneva, 2021.

X. Zhang et al., “Ecotoxicology and Environmental Safety,” Ecotoxicol. Environ. Saf., vol. 191, p. 110214, 2020.

I. Dusfour et al., “PLoS Neglected Tropical Diseases,” PLoS Negl. Trop. Dis., vol. 13, no. 10, p. e0007615, 2019.

P. J. Gullan and P. S. Cranston, The Insects: An Outline of Entomology, 5th ed., Wiley-Blackwell, 2014.

Y. Hou et al., “Nanoscale,” Nanoscale, vol. 14, no. 14, pp. 5265–5283, 2022.

M. F. Jaramillo et al., “Environmental Science: Nano,” Environ. Sci.: Nano, vol. 7, no. 4, pp. 1027–1045, 2020.

S. Karthikeyan et al., “Journal of Cluster Science,” J. Clust. Sci., vol. 32, pp. 1365–1375, 2021.

U. Muthukumaran et al., “Environmental Science and Pollution Research,” Environ. Sci. Pollut. Res., vol. 28, pp. 34135–34146, 2021.

J. L. Oliveira et al., “Trends in Biotechnology,” Trends Biotechnol., vol. 40, no. 5, pp. 518–531, 2022.

U. K. Parashar et al., “Environmental Technology & Innovation,” Environ. Technol. Innov., vol. 19, p. 100857, 2020.

R. Salomoni et al., “Journal of Materials Science,” J. Mater. Sci., vol. 52, no. 12, pp. 7405–7416, 2017.

T. Y. Suman et al., “Journal of Nanoparticle Research,” J. Nanopart. Res., vol. 22, pp. 1–12, 2020.

M. I. Yousef et al., “Environmental Toxicology,” Environ. Toxicol., vol. 37, no. 3, pp. 453–463, 2022.

M. Al-Salih, S. Samsudin, and S. S. Arshad, “Cellular Total Lipid Peroxidation and Glutathione S-Transferase Levels in Larvae and Pupae of Aedes aegypti With Catalysts Preparation of Mg-Doped TiO₂ Nanoparticles,” J. Phys.: Conf. Ser., vol. 1973, no. 1, p. 012124, 2021.