Hasanain Mohammed Hasan (1)
Highlights
[1] M. J. Beetz, “A perspective on neuroethology: what the past teaches us about the future of neuroethology,” J. Comp. Physiol. A, vol. 210, pp. 325–346, 2024.
[2] T. Anttonen, T. Burghi, L. Duvall, M. P. Fernandez, G. Gutierrez, F. Kermen, et al., “Neurobiology and changing ecosystems: mechanisms underlying responses to human-generated environmental impacts,” J. Neurosci., vol. 43, no. 45, pp. 7530–7537, 2023.
[3] I. W. Keesey, “Sensory neuroecology and multimodal evolution across the genus Drosophila,” Front. Ecol. Evol., vol. 10, p. 932344, 2022.
[4] P. Sunde, F. Böcker, G. R. Rauset, P. Kjellander, M. Chrenkova, T. M. Skovdal, et al., “Mammal responses to predator scents across multiple study areas,” Ecosphere, vol. 13, no. 8, p. e4215, 2022.
[5] N. D. Harrison, R. Steven, B. L. Phillips, J. M. Hemmi, A. F. Wayne, and N. J. Mitchell, “Identifying the most effective behavioural assays and predator cues for quantifying anti-predator responses in mammals: a systematic review,” Environ. Evid., vol. 12, no. 1, p. 5, 2023.
[6] M. Bárbara, I. Ornelas, E. D. da Silva, et al., “Olfactory behavioural and neural responses of planktivorous lacustrine sockeye salmon (Oncorhynchus nerka) to prey odours,” J. Fish Biol., 2022.
[7] A. Graeve, I. Ioannidou, J. Reinhard, D. M. Görl, A. Faissner, and L. C. Weiss, “Brain volume increase and neuronal plasticity underlie predator-induced morphological defense expression in Daphnia longicephala,” Sci. Rep., vol. 11, no. 1, p. 12612, 2021.
[8] C. Shang, A. Liu, D. Li, Z. Xie, Z. Chen, M. Huang, Y. Li, Y. Wang, W. L. Shen, and P. Cao, “A subcortical excitatory circuit for sensory-triggered predatory hunting in mice,” Nat. Neurosci., vol. 22, no. 6, pp. 909–920, Jun. 2019.
[9] Y. Zhou, J. Cao, J. Fox, and Y. Yu, “Cross-sensory modulation in a future top predator, the young Nile crocodile (Crocodylus niloticus),” Anim. Behav., 2023.
[10] L. Wang and M. S. Fanselow, “Neurocircuitry of predatory hunting,” Neurosci. Bull., vol. 39, no. 1, pp. 817–831, 2023.
[11] P. Jovanovic, A.-H. Pool, N. Morones, Y. Wang, E. Novinbakht, N. Keshishian, K. Jang, Y. Oka, and C. E. Riera, “A sex-specific thermogenic neurocircuit induced by predator smell recruiting cholecystokinin neurons in the dorsomedial hypothalamus,” Nat. Commun., vol. 14, p. 4937, 2023.
[12] C. S. Wilkinson, H. L. Blount, M. Schwendt, and L. A. Knackstedt, “Brain monoamine dysfunction in response to predator scent stress accompanies stress-susceptibility in female rats,” Biomolecules, vol. 13, no. 7, p. 1055, 2023.
[13] H. Thapa, A. Salahinejad, A. L. Crane, et al., “Background predation risk induces anxiety-like behaviour and predator neophobia in zebrafish,” Anim. Cogn., vol. 27, p. 69, 2024.
[14] M. V. Kondashevskaya, H. F. Downey, V. E. Tseilikman, V. V. Alexandrin, K. A. Artem’yeva, V. V. Aleksankina, O. B. Tseilikman, A. A. Pashkov, A. V. Goryacheva, I. S. Ivleva, M. N. Karpenko, V. A. Shatilov, and E. B. Manukhina, “Cerebral blood flow in predator stress-resilient and -susceptible rats and mechanisms of resilience,” Int. J. Mol. Sci., vol. 23, no. 23, p. 14729, 2022.
[15] I. P. Neylan, E. K. Longman, E. Sanford, J. J. Stachowicz, and A. Sih, “Long-term anti-predator learning and memory differ across populations and sexes in an intertidal snail Nucella canaliculata,” Proc. R. Soc. B, vol. 291, no. 2032, 2024.
[16] A. L. Crane, G. H. Achtymichuk, I. A. E. Rivera-Hernández, A. A. Pregola, H. Thapa, and M. C. O. Ferrari, “Uncertainty about old information results in differential predator memory in tadpoles,” Proc. R. Soc. B, vol. 290, no. 1998, p. 20230746, 2023.
[17] C. C. Ganci, L. McKay, L. Hunninck, and M. J. Sheriff, “Impacts of predation risk on learning and memory of free-living mice,” Proc. R. Soc. B, vol. 292, no. 2041, p. 20241978, 2025.
[18] S. I. Zhu and G. J. Goodhill, “From perception to behavior: The neural circuits underlying prey hunting in larval zebrafish,” Front. Neural Circuits, vol. 17, p. 1087993, 2023.
[19] D. W. Kikuchi, W. L. Allen, K. Arbuckle, T. G. Aubier, E. S. Briolat, E. R. Burdfield-Steel, et al., “The evolution and ecology of multiple antipredator defences,” J. Evol. Biol., vol. 36, no. 7, pp. 975–991, 2023.
[20] Z.-D. Zhao, L. Zhang, X. Xiang, D. Kim, H. Li, P. Cao, and W. L. Shen, “Neurocircuitry of predatory hunting,” Neurosci. Bull., vol. 39, no. 5, pp. 817–831, 2023.
[21] A. Batabyal, “Predator–prey systems as models for integrative research in biology: The value of a non-consumptive effects framework,” J. Exp. Biol., vol. 226, no. 19, p. jeb245851, 2023.
[22] S. O. Lehtinen, “Ecological and evolutionary consequences of predator-prey role reversal: Allee effect and catastrophic predator extinction,” J. Theor. Biol., vol. 510, p. 110542, 2021.
[23] Y. Niimura, A. Matsui, and K. Touhara, “Diet shapes the evolution of the vertebrate bitter taste receptor gene repertoire,” Mol. Biol. Evol., vol. 31, no. 2, pp. 347–354, 2014.
[24] J. R. Fetcho, T. Yang, et al., “Functional evolution of vertebrate sensory receptors: identifying residues associated with sensory shifts,” J. Comp. Physiol. A, vol. 206, no. 5, pp. 645–658, 2020.
[25] Y. Fu, G. Xu, S. Gao, L. Feng, Q. Guo, and H. Yang, “LiDAR reveals the process of vision-mediated predator–prey relationships,” Remote Sens., vol. 14, no. 15, p. 3730, 2022.
[26] Y. Papastamatiou, N. Hammerschlag, et al., “Dynamic energy landscapes of predators and the implications for modifying prey risk,” Funct. Ecol., 2024.
[27] J. A. Smith, L. K. Taylor, et al., “Cognitive ecology of surprise in predator-prey interactions,” Funct. Ecol., vol. 39, no. 3, pp. 664–680, 2025.
[28] V. V. Pravosudov and T. C. Roth, “Cognitive ecology of food hoarding: decision making, learning and memory,” Philos. Trans. R. Soc. B, vol. 375, no. 1793, p. 20190497, 2020.