Login
Section Articles

Biosynthesized Silver Nanoparticles Demonstrate Hepatoprotective Biochemical Safety in Female Wistar Rats

Vol. 2 No. 3 (2025): Desember:

Suhad Khalid Sgheer (1), Ali Tariq Abdul Hassan (2)

(1) Directorate of Education of Kerbala, Ministry of Education, Kerbala, Iraq
(2) Directorate of Education of Kerbala, Ministry of Education, Kerbala, Iraq
Fulltext View | Download

Abstract:

General Background: Silver nanoparticles (AgNPs) are widely applied in biomedical and technological fields, yet conventional chemical and physical synthesis methods raise safety and environmental concerns. Specific Background: Biosynthesis using probiotic bacteria such as Lactobacillus rhamnosus has emerged as a green alternative with potential biocompatibility advantages. Knowledge Gap: Limited in vivo evidence exists regarding the biochemical and histological safety of biosynthesized AgNPs, particularly their hepatic effects. Aims: This study aimed to evaluate the biochemical and histological effects of AgNPs biosynthesized by L. rhamnosus in female Wistar albino rats. Results: Biosynthesized AgNPs significantly reduced liver enzymes (ALT, AST, and ALP), significantly increased vitamin B12 levels, showed no significant change in body weight, and preserved normal liver tissue architecture. Novelty: The study demonstrates the hepatic safety profile of L. rhamnosus–mediated AgNPs in vivo compared with risks reported for conventionally synthesized AgNPs. Implications: These findings support probiotic-mediated biosynthesis as a safer and environmentally friendly approach for developing silver nanoparticles for biomedical applications.
Keywords : Biosynthesized Silver Nanoparticles, Lactobacillus rhamnosus, Green Nanoparticle Synthesis, Liver Enzyme Biomarkers, Wistar Albino Rats
Highlight :




  • Significant reductions in AST, ALT, and ALP without alterations in body mass.




  • Serum vitamin B12 concentrations increased markedly following 30-day administration.




  • Liver histology preserved normal architecture, indicating absence of hepatocellular damage.



References

T. Bartlomiejczyk, A. Lankoff, M. Kruszewski, and I. Szumiel, "Silver Nanoparticles – Allies or Adversaries?," Annals of Agricultural and Environmental Medicine, vol. 20, no. 1, pp. 48–54, 2013.

M. S. Sadak, "Impact of Silver Nanoparticles on Plant Growth, Some Biochemical Aspects, and Yield of Fenugreek Plant (Trigonella foenum-graecum)," Bulletin of the National Research Centre, vol. 43, no. 1, pp. 1–6, 2019, doi: 10.1186/s42269-019-0075-1.

A. K. Kansotiya, R. K. Sharma, S. K. Singh, P. K. Yadav, and A. Kumar, "Assessment of the Effect of Green Synthesized Silver Nanoparticles on Reproduction in Mammals," Biology Forum – An International Journal, vol. 16, no. 11, pp. 32–38, 2024.

Z. Parang and D. Moghadamnia, "Effects of Silver Nanoparticles on Liver Functional Tests and Histological Changes in Adult Male Rats," Nanomedicine Research Journal, vol. 3, no. 3, pp. 146–153, 2018, doi: 10.22034/nmrj.2018.03.007.

S. Bayda, M. Adeel, T. Tuccinardi, M. Cordani, and F. Rizzolio, "The History of Nanoscience and Nanotechnology: From Chemical–Physical Applications to Nanomedicine," Molecules, vol. 25, no. 1, p. 112, 2019, doi: 10.3390/molecules25010112.

A. A. Yetisgin, S. Cetinel, M. Zuvin, A. Kosar, and O. Kutlu, "Therapeutic Nanoparticles and Their Targeted Delivery Applications," Molecules, vol. 25, no. 9, p. 2193, 2020, doi: 10.3390/molecules25092193.

W. Najahi-Missaoui, R. D. Arnold, and B. S. Cummings, "Safe Nanoparticles: Are We There Yet?," International Journal of Molecular Sciences, vol. 22, no. 1, p. 385, 2020, doi: 10.3390/ijms22010385.

I. Sanzari, A. Leone, and A. Ambrosone, "Nanotechnology in Plant Science: To Make a Long Story Short," Frontiers in Bioengineering and Biotechnology, vol. 7, p. 120, 2019, doi: 10.3389/fbioe.2019.00120.

B. R. Sari, J. Amini, M. R. Khajedaluee, M. Seyyedi, M. Naderi-Meshkin, and M. Bidkhori, "Superior In Vivo Wound-Healing Activity of Biosynthesized Silver Nanoparticles with Nepeta cataria," Biological Trace Element Research, vol. 203, no. 3, pp. 1502–1517, 2025, doi: 10.1007/s12011-024-04184-8.

O. K. Shittu, O. I. Oluyomi, and T. Y. Gara, "Safety Assessment of Bio-synthesized Iodine-Doped Silver Nanoparticle Wound Ointment," Clinical Phytoscience, vol. 7, no. 1, p. 74, 2021, doi: 10.1186/s40816-021-00312-4.

A. Dehnoee, Z. Mohammadi, M. Sheikhi, Y. Ghasemi, and A. Azhdarzadeh, "Characterization and Cytotoxicity of Biosynthesized Copper Nanoparticles Using Aloe vera Extract," Journal of Cluster Science, vol. 35, pp. 863–874, 2024, doi: 10.1007/s10876-023-02527-3.

V. Parashar, R. Parashar, B. Sharma, and A. C. Pandey, "Parthenium Leaf Extract Mediated Synthesis of Silver Nanoparticles: A Novel Approach Towards Weed Utilization," Digest Journal of Nanomaterials and Biostructures, vol. 4, no. 1, pp. 45–50, 2009.

L. Ge, Q. Li, M. Wang, J. Ouyang, X. Li, and M. M. Q. Xing, "Nanosilver Particles in Medical Applications: Synthesis, Performance, and Toxicity," International Journal of Nanomedicine, vol. 9, pp. 2399–2410, 2014, doi: 10.2147/IJN.S55015.

N. E. A. El-Naggar, M. H. Hussein, and A. A. El-Sawah, "Bio-fabrication of Silver Nanoparticles by Phycocyanin, Characterization, In Vitro Anticancer Activity Against Breast Cancer Cell Line and In Vivo Cytotxicity," Scientific Reports, vol. 8, no. 1, p. 8925, 2018, doi: 10.1038/s41598-018-27276-6.

Y. A. O. Suliman, Z. S. Ali, B. E. Alarifi, S. A. Harrath, A. H. Mansour, and A. S. Alwasel, "Evaluation of Cytotoxic, Oxidative Stress, Proinflammatory and Genotoxic Effect of Silver Nanoparticles in Human Lung Epithelial Cells," Environmental Toxicology, vol. 30, no. 2, pp. 149–160, 2015, doi: 10.1002/tox.21880.

S. M. Hussain, K. L. Hess, J. M. Gearhart, K. T. Geiss, and J. J. Schlager, "In Vitro Toxicity of Nanoparticles in BRL 3A Rat Liver Cells," Toxicology In Vitro, vol. 19, no. 7, pp. 975–983, 2005, doi: 10.1016/j.tiv.2005.06.034.

L. Xu, Y. Dan, Y. Shao, X. Chen, H. Wang, and J. Ma, "Silver Nanoparticles Induce Tight Junction Disruption and Astrocyte Neurotoxicity in a Rat Blood-Brain Barrier Primary Triple Coculture Model," Journal of Nanobiotechnology, vol. 10, no. 1, p. 16, 2012, doi: 10.1186/1477-3155-10-16.

A. Mohammadi, S. M. Hosseini-Asl, and M. Seyedsalehi, "The Combination of Ezetimibe and Garlic Extract Further Reduces Serum Lipids: A Double-Blind Clinical Study," Avicenna Journal of Medical Biochemistry, vol. 3, no. 1, pp. 1–5, 2015, doi: 10.17795/ajmb-27012.

V.-S. Eckle, S. D. Buchmann, M. R. Bursch, A. Lichter, N. Schulze-Osthoff, and K. Schulze-Osthoff, "Immunohistochemical Detection of Activated Caspases in Apoptotic Hepatocytes in Native Liver Tissue," Toxicologic Pathology, vol. 32, no. 1, pp. 9–15, 2004, doi: 10.1080/01926230490260772.

G. Mulaw, T. Sisay Tessema, D. Muleta, and A. Tesfaye, "In Vitro Evaluation of Probiotic Properties of Lactic Acid Bacteria Isolated from Some Traditionally Fermented Ethiopian Food Products," International Journal of Microbiology, vol. 2019, p. 7179514, 2019, doi: 10.1155/2019/7179514.

F. Famouri, Z. Shariat, M. Hashemipour, M. Keikha, and R. Kelishadi, "Effects of Probiotics on Nonalcoholic Fatty Liver Disease in Obese Children and Adolescents," Journal of Pediatric Gastroenterology and Nutrition, vol. 64, no. 3, pp. 413–417, 2017, doi: 10.1097/MPG.0000000000001422.

Y. Liu, J. Chen, R. Tan, X. Li, H. Zhong, T. Li, Y. Liao, and Y. Zhang, "Probiotic Lactobacillus rhamnosus GG Prevents Liver Fibrosis Through Inhibiting Hepatic Bile Acid Synthesis and Enhancing Bile Acid Excretion in Mice," Hepatology, vol. 71, no. 6, pp. 2050–2066, 2020, doi: 10.1002/hep.30975.

Q. A. Naseer, M. Zubair, S. Usman, M. Ahmad, M. Ishtiaq, and N. Rasool, "Synthesis of Silver Nanoparticles Using Lactobacillus bulgaricus and Assessment of Their Antibacterial Potential," Brazilian Journal of Biology, vol. 82, p. e243253, 2021, doi: 10.1590/1519-6984.243253.

B. Koul, B. Taak, P. Kumar, A. Kumar, M. Sanford, and I. Yadav, "Microbe-Mediated Biosynthesis of Nanoparticles: Applications and Future Prospects," Biomolecules, vol. 11, no. 6, p. 886, 2021, doi: 10.3390/biom11060886.

J. Harley and L. Prescott, Laboratory Exercises in Microbiology, 5th ed. New York, NY, USA: McGraw-Hill, 2002.

N. Saifuddin, C. W. Wong, and A. A. Yasumira, "Rapid Biosynthesis of Silver Nanoparticles Using Culture Supernatant of Bacteria with Microwave Irradiation," E-Journal of Chemistry, vol. 6, no. 1, pp. 61–70, 2009, doi: 10.1155/2009/734264.

A. Labanni, C. Labruna, M. L. Feo, A. Nacci, and L. Valli, "Stabilizing Agents in Green Synthesis of Silver Nanoparticles and Their Effects on Colloidal Properties," Journal of Dispersion Science and Technology, vol. 41, no. 10, pp. 1480–1487, 2020, doi: 10.1080/01932691.2019.1614038.

SAS Institute Inc., SAS User's Guide: Statistics, Version 9.3. Cary, NC, USA: SAS Institute Inc., 2018.

E. Wang, L. Zhao, Y. Hong, W. Han, H. Wang, and H. Liu, "Silver Nanoparticle-Induced Toxicity to Human Sperm by Increasing ROS (Reactive Oxygen Species) Production and DNA Damage," Environmental Toxicology and Pharmacology, vol. 52, pp. 193–199, 2017, doi: 10.1016/j.etap.2017.04.010.

J. Blanco, A. Tomás-Hernández, D. García, T. Martínez, S. Gómez, J. L. Domingo, and J. L. Sánchez, "Oral Exposure to Silver Nanoparticles Increases Oxidative Stress Markers in the Liver of Male Rats and Deregulates the Insulin Signalling Pathway and p53 and Cleaved Caspase 3 Protein Expression," Food and Chemical Toxicology, vol. 115, pp. 398–404, 2018, doi: 10.1016/j.fct.2018.03.039.

A. M. Al-Attar, "Physiological and Histopathological Investigations on the Effects of α-Lipoic Acid in Rats Exposed to Malathion," Journal of Biomedicine and Biotechnology, vol. 2012, pp. 1–9, 2012, doi: 10.1155/2012/203503.

D. Ali, S. Alarifi, S. Kumar, M. Ahamed, and M. A. Siddiqui, "Oxidative Stress and Genotoxic Effect of Silver Nanoparticles in Liver of Swiss Albino Mice," OncoTargets and Therapy, vol. 8, pp. 295–302, 2015, doi: 10.2147/OTT.S75044.

H. Guo, J. Zhang, N. Boudreau, J. Meng, J. J. Yin, J. Liu, and H. Xu, "Intravenous Administration of Silver Nanoparticles Causes Organ Toxicity Through Intracellular ROS-Related Loss of Inter-Endothelial Junction," Particle and Fibre Toxicology, vol. 13, no. 1, p. 21, 2016, doi: 10.1186/s12989-016-0133-9.

J. S. Teodoro, A. M. Simões, F. V. Duarte, A. P. Rolo, R. C. Murdoch, S. M. Hussain, and C. M. Palmeira, "Assessment of the Toxicity of Silver Nanoparticles In Vitro: A Mitochondrial Perspective," Toxicology In Vitro, vol. 25, no. 3, pp. 664–670, 2011, doi: 10.1016/j.tiv.2011.01.004.

W. P. Susan, P. R. Locke, and R. D. Klaine, "Nanosilver: A Review of Available Data and Knowledge Gaps in Human and Environmental Risk Assessment," Nanotoxicology, vol. 3, no. 2, pp. 109–138, 2009, doi: 10.1080/17435390902725914.

Y. Mohamed, G. El-Kafoury, and S. A. Mousa, "Effect of Silver Nanoparticles on Female Reproduction," Egyptian Journal of Basic and Applied Sciences, vol. 9, no. 1, pp. 340–358, 2022, doi: 10.1080/2314808X.2022.2148986.

S. A. R. Abbas, M. I. Nasser, and I. M. Ahmed, "Effects of Gold and Silver Nanoparticles on Serum Biochemical Parameters in Rats," International Journal of Chemical Research, vol. 1, no. 2, pp. 2249–2329, 2011.

O. S. Adeyemi and F. A. Sulaiman, "Evaluation of Metal Nanoparticles for Drug Delivery Systems," Journal of Basic and Clinical Physiology and Pharmacology, vol. 23, no. 4, pp. 179–183, 2012, doi: 10.1515/jbcpp-2012-0021.

F. A. Sulaiman, S. O. Adeyemi, O. S. Akanji, V. O. Oloyede, T. A. Sulaiman, G. O. Olatunde, D. T. Benard-Akanji, and M. A. Akanji, "Biochemical and Morphological Alterations Caused by Silver Nanoparticles in Wistar Rats," Journal of Acute Medicine, vol. 5, no. 4, pp. 96–102, 2015, doi: 10.1016/j.jacme.2015.07.002.

A. Hudecova, M. Hasplova, and E. Miadokova, "Comparative Study of Four Fluorescent Probes for Evaluation of Oxidative DNA Damage Induced by Silver Nanoparticles," Mutagenesis, vol. 27, no. 6, pp. 759–769, 2012, doi: 10.1093/mutage/ges043.

C. H. Huang, C. C. Chen, J. S. Liou, L. C. Lee, Y. W. Chen, and S. L. Chen, "Genome-Based Reclassification of Lactobacillus casei: Emended Classification and Description of the Species and Novel Species Lactobacillus zeae," Frontiers in Microbiology, vol. 9, p. 1974, 2018, doi: 10.3389/fmicb.2018.01974.

S. M. Won, E. J. Oh, M. S. Kyung, J. Y. Imm, and S. H. Park, "Gut Lactobacillus Ameliorates Liver Fibrosis Through Immunomodulation and Intestinal Barrier Restoration," Journal of Microbiology, vol. 61, no. 2, pp. 245–257, 2023, doi: 10.1007/s12275-023-00020-3.

O. S. Adeyemi, F. A. Sulaiman, M. A. Akanji, D. T. Benard-Akanji, and V. O. Oloyede, "Exposure to Silver Nanoparticles Induced Size-Dependent Alterations in Biochemical Indices and Metabolic Enzymes of Wistar Rats," Journal of Basic and Clinical Physiology and Pharmacology, vol. 26, no. 4, pp. 355–361, 2015, doi: 10.1515/jbcpp-2014-0074.

B. E. El-Bialy, N. M. Hamouda, K. H. Khalifa, H. A. Hamza, and A. A. Nomeir, "Cytotoxic Effect of Biosynthesized Silver Nanoparticles on Ehrlich Ascites Tumor Cells in Mice," International Journal of Pharmacology, vol. 13, no. 2, pp. 134–144, 2017, doi: 10.3923/ijp.2017.134.144.

P. V. AshaRani, G. Low Kah Mun, M. P. Hande, and S. Valiyaveettil, "Cytotoxicity and Genotoxicity of Silver Nanoparticles in Human Cells," ACS Nano, vol. 3, no. 2, pp. 279–290, 2009, doi: 10.1021/nn800596w.

D. Wei, W. Sun, W. Qian, Y. Ye, and X. Ma, "The Synthesis of Chitosan-Based Silver Nanoparticles and Their Antibacterial Activity," Carbohydrate Research, vol. 344, no. 17, pp. 2375–2382, 2009, doi: 10.1016/j.carres.2009.09.001.

J. R. Morones, J. L. Elechiguerra, A. Camacho, K. Holt, J. B. Kouri, J. T. Ramírez, and M. J. Yacaman, "The Bactericidal Effect of Silver Nanoparticles," Nanotechnology, vol. 16, no. 10, pp. 2346–2353, 2005, doi: 10.1088/0957-4484/16/10/059.