Spectroscopic, Anticancer and Theoretical Study of New Ligand Derived From (3-hydrazineylidenebutan-2-one oxime) and its Complex with Some Metal Ions


Spektroskopi, Antikanker dan Kajian Teoritis Ligan Baru yang Berasal dari (3-hidrazinilidenebutan-2-satu oksim) dan Kompleksnya dengan Beberapa Ion Logam


  • (1) * Israa Ali Abbas            Department of Chemistry, College of Science, University of Thi-Qar  
            Iraq

  • (2)  Fayez Owaid Neamah2 Neamah            Directorate-General for Education Dhi Qar  
            Iraq

    (*) Corresponding Author

Abstract

The new Schiff base ligand derivate from 3-hydrazineylidenebutan-2-one oxime and its metal complexes were synthesized and characterized by analytical technique and spectroscopy method such as HNMR, FTIR and mass spectroscopy. The optimized geometric structures and HOMO-LUMO orbitals were computed by using DFT (density functional theory) at B3LYP/6-31G+(d,p) level. When the ligand's cytotoxic activity was tested against human breast cancer (MCF-7) and normal cells (WRL68), it was found to be more cytotoxic against MCF-7 but reasonably safe against normal cells.

 Highlights:

  1. ynthesis: Schiff base ligand and metal complexes characterized via spectroscopy techniques.
  2. Computational: DFT calculated optimized structures, HOMO-LUMO orbitals at B3LYP/6-31G+ level.
  3. Cytotoxicity: Ligand showed higher toxicity against MCF-7 cells, safe for normal cells.

Keywords: anticancer, complex, ligand, oxime, Schiff base

References

N. P. P. and S. A. S. Kalaivani, “SCHIFF BASES: FACILE SYNTHESIS, SPECTRAL CHARACTERIZATION AND BIOCIDAL STUDIES,” IJAGPT, vol. 3, no. 1, pp. 219–223, 2012.

S. Slassi, A. Fix-Tailler, G. Larcher, A. Amine, and A. El-Ghayoury, “Imidazole and Azo-Based Schiff Bases Ligands as Highly Active Antifungal and Antioxidant Components,” Heteroatom Chemistry, vol. 2019, pp. 1–8, Jan. 2019, doi: 10.1155/2019/6862170.

G. , S. R. R. R. and K. R. Valarmathy, “Synthesis of Schiff base (E)-2-(((3-Hydroxyphenyl)imino)methyl)-6-methoxyphenol Containing N and O Donors and its Metal Complexes: Spectral, Thermal, Redox Behaviour, Fluorescence Quenching, Antimicrobial and Anticancer Studies Fluorescence Quenching, Antimicrobial and Anticancer Studies,” Asian .J. chem, vol. 30, pp. 645–650, 2018.

L. S. Ashoor, R. A. Majeed, and R. K. R. Al-Shemary, “"Applications of biological of Azo-Schiff base ligand and its metal complexes and: A review ",” Muthanna J Pure Sci, vol. 8, no. 1, pp. 74–80, Jan. 2021, doi: 10.52113/2/08.01.2021/74-90.

F. K. Ommenya, E. A. Nyawade, D. M. Andala, and J. Kinyua, “Synthesis, Characterization and Antibacterial Activity of Schiff Base, 4-Chloro-2-{(E)-[(4-Fluorophenyl)imino]methyl}phenol Metal (II) Complexes,” J Chem, vol. 2020, pp. 1–8, Mar. 2020, doi: 10.1155/2020/1745236.

L. Wei et al., “Antifungal activity of double Schiff bases of chitosan derivatives bearing active halogeno-benzenes,” Int J Biol Macromol, vol. 179, pp. 292–298, May 2021, doi: 10.1016/j.ijbiomac.2021.02.184.

S. J. Hamid and T. Salih, “Design, Synthesis, and Anti-Inflammatory Activity of Some Coumarin Schiff Base Derivatives: In silico and in vitro Study,” Drug Des Devel Ther, vol. Volume 16, pp. 2275–2288, Jul. 2022, doi: 10.2147/DDDT.S364746.

S. Murtaza, M. S. Akhtar, F. Kanwal, A. Abbas, S. Ashiq, and S. Shamim, “Synthesis and biological evaluation of schiff bases of 4-aminophenazone as an anti-inflammatory, analgesic and antipyretic agent,” Journal of Saudi Chemical Society, vol. 21, pp. S359–S372, Jan. 2017, doi: 10.1016/j.jscs.2014.04.003.

M. S. Tople, N. B. Patel, P. P. Patel, A. C. Purohit, I. Ahmad, and H. Patel, “An in silico-in vitro antimalarial and antimicrobial investigation of newer 7-chloroquinoline based Schiff-bases,” J Mol Struct, vol. 1271, p. 134016, Jan. 2023, doi: 10.1016/j.molstruc.2022.134016.

S. Kaushik, S. K. Paliwal, M. R. Iyer, and V. M. Patil, “Promising Schiff bases in antiviral drug design and discovery,” Medicinal Chemistry Research, vol. 32, no. 6, pp. 1063–1076, Jun. 2023, doi: 10.1007/s00044-023-03068-0.

I. A. Seliem et al., “Development of Isatin‐Based Schiff Bases Targeting VEGFR‐2 Inhibition: Synthesis, Characterization, Antiproliferative Properties, and QSAR Studies,” ChemMedChem, vol. 17, no. 13, Jul. 2022, doi: 10.1002/cmdc.202200164.

D. Iacopetta et al., “Schiff Bases: Interesting Scaffolds with Promising Antitumoral Properties,” Applied Sciences, vol. 11, no. 4, p. 1877, Feb. 2021, doi: 10.3390/app11041877.

A. M. Hassan, A. O. Said, B. H. Heakal, A. Younis, W. M. Aboulthana, and M. F. Mady, “Green Synthesis, Characterization, Antimicrobial and Anticancer Screening of New Metal Complexes Incorporating Schiff Base,” ACS Omega, vol. 7, no. 36, pp. 32418–32431, Sep. 2022, doi: 10.1021/acsomega.2c03911.

M. H. Raheema, N. A. Khudhair, T. H. AL-Noor, S. R. Al-Ayash, H. H. Kharnoob, and S. M. H. Obed, “Enhancement of corrosion protection of metal carbon steel C45 and stainless steel 316 by using inhibitor (Schiff base) in sea water,” Baghdad Science Journal, vol. 20, no. 3(Suppl.), p. 1012, Jun. 2023, doi: 10.21123/bsj.2023.7749.

K. M. Abuamer, A. A. Maihub, M. M. El-Ajaily, A. M. Etorki, M. M. Abou-Krisha, and M. A. Almagani, “The Role of Aromatic Schiff Bases in the Dyes Techniques,” Int J Org Chem (Irvine), vol. 04, no. 01, pp. 7–15, 2014, doi: 10.4236/ijoc.2014.41002.

J. Anacona and J. Santaella, “Synthesis, magnetic and spectroscopic studies of a Schiff base derived from cephaclor and 1,2-diaminobenzene and its transition metal complexes,” Spectrochim Acta A Mol Biomol Spectrosc, vol. 115, pp. 800–804, Nov. 2013, doi: 10.1016/j.saa.2013.06.107.

G. Sundararajan, D. Rajaraman, T. Srinivasan, D. Velmurugan, and K. Krishnasamy, “Synthesis, characterization, computational calculation and biological studies of some 2,6-diaryl-1-(prop-2-yn-1-yl)piperidin-4-one oxime derivatives,” Spectrochim Acta A Mol Biomol Spectrosc, vol. 139, pp. 108–118, Mar. 2015, doi: 10.1016/j.saa.2014.12.014.

L. Di Costanzo, M. Moulin, M. Haertlein, F. Meilleur, and D. W. Christianson, “Expression, purification, assay, and crystal structure of perdeuterated human arginase I,” Arch Biochem Biophys, vol. 465, no. 1, pp. 82–89, Sep. 2007, doi: 10.1016/j.abb.2007.04.036.

P. Kumar, A. Nagarajan, and P. D. Uchil, “Analysis of Cell Viability by the MTT Assay,” Cold Spring Harb Protoc, vol. 2018, no. 6, p. pdb.prot095505, Jun. 2018, doi: 10.1101/pdb.prot095505.

L. Gasparini et al., “In vitro cell viability by CellProfiler ® software as equivalent to MTT assay,” Pharmacogn Mag, vol. 13, no. 50, p. 365, 2017, doi: 10.4103/0973-1296.210176.

E. M. Abdalla, S. S. Hassan, H. H. Elganzory, S. A. Aly, and H. Alshater, “Molecular Docking, DFT Calculations, Effect of High Energetic Ionizing Radiation, and Biological Evaluation of Some Novel Metal (II) Heteroleptic Complexes Bearing the Thiosemicarbazone Ligand,” Molecules, vol. 26, no. 19, p. 5851, Sep. 2021, doi: 10.3390/molecules26195851.

Published
2025-01-16
 
Section
Articles